Наука, Образование : Технические науки : § 5.2 БТР в древних играх : Сергей Семиков

на главную страницу  Контакты  Разм.статью


страницы книги:
 0  1  7  14  21  28  35  42  49  56  63  70  77  84  91  98  105  112  119  126  133  140  147  154  161  168  175  182  189  196  202  203  204  210  217  224  231  232  233

вы читаете книгу




§ 5.2 БТР в древних играх

Народ, не помнящий своего прошлого, не имеет будущего.

Платон, IV в. до н. э.

Известно, что дети познают мир в процессе игры. Как теперь становится ясно, и взрослые люди, учёные познают реальный мир при помощи игр. Именно поэтому лишь увлечённые, любознательные и наделённые богатой фантазией, игровым воображением исследователи и совершали великие открытия в ходе своеобразной игры интеллекта, гимнастики ума. Так, Менделеев открыл одноимённую таблицу, раскладывая пасьянс из карт с названиями химических элементов. Для учёного научный поиск — это сложная игра со своими правилами. Смысл её в том, чтобы разгадать загадки природы, выложить мозаику, собрать головоломку фактов. Даже постановка опытов и экспериментов содержит ряд игровых элементов. Но это не абстрактная, формальная игра ума без правил и не бессмысленное буйство фантазии, как у Эйнштейна, Эддингтона, Бора, а честная логическая игра с Природой в попытке раскрыть её тайны, установить реально существующие взаимосвязи. Такой игровой способ познания мира существовал всегда и практиковался во многих древних культах и играх. Тому же служат и современные детские игры и головоломки — Кубик Рубика, пятнашки, конструктор, кубики, паззлы. Все они учат детей созиданию и комбинированию элементов мира, установлению связей, выстраиванию целостной картины мира. Роль развивающих игр (волчков, головоломок, магнитов) в формировании у ребёнка глубоких представлений об устройстве мира и в обострении его восприятия отражена и в фильме "Последняя Мимзи Вселенной", снятом по рассказу Г. Каттнера. Иными словами, игры — это миниатюрные модели мира. Именно в таком качестве они издревле и служили людям, начинающим с самого детства моделировать в процессе игры большой мир.

Пожалуй, древнейшей научной игрой человека является игра с огнём, пиротехника, уже не раз приводившаяся для иллюстрации баллистической модели (Рис. 7, Рис. 139, Рис. 141). Очень может быть, что внешнее уподобление электрона бенгальскому огню, взрывающемуся каскадом искр, имеет глубокий смысл. Как оказалось, карнавальная пиротехника (ракеты, фейерверки, огненные колёса) имеет очень древнее происхождение. Считается, что порох и пиротехнику изобрели в Китае больше двух тысячелетий назад. Но в действительности, это, вероятно, гораздо более древнее изобретение. Ведь и компас, порох, бумага, как теперь выясняется, были изобретены не в Китае, а пришли туда в качестве наследия от гораздо более древних цивилизаций, так же как многие "изобретения" арабов, заимствованные из Европы, где были забыты в средневековую эпоху варварства.

Вероятнее всего порох и пиротехника пришли из Индии, где они выполняли не только развлекательную, но и важную военную и ритуальную функцию. Об индийском происхождении пиротехники говорит уже название "бенгальский огонь". И точно, так же, как в Великую отечественную войну славились русские "Катюши", ещё в XVIII веке была знаменита индийская ракетная техника, применённая против колонизировавших Индию англичан. В Индии существовали даже специальные ракетные войска [68]. Индийское происхождение пиротехники подтверждается и тем, что именно там более всего был развит культ огня, Солнца и огнепоклонников. Вот откуда пошли факиры и факельные шествия, да и само слово "огонь", как считают, произошедшее от имени огненного бога Агни, которому поклонялись древние арии. В индийских обрядах огонь и пиротехника играли важную ритуальную роль. Столь большое и серьёзное значение, придаваемое фейерверкам, говорит о том, что огонь имел скрытый, сакральный смысл. И потому не исключено, что фейерверк служил именно моделью, иллюстрацией знаний древних об испускании света, о строении электрона, источающего, словно бенгальский огонь, поток искр-реонов (§ 1.4). И скорее это даже не просто модель, а, подобно многим играм, ключ к пониманию мега- и микромира и своеобразное активное взаимодействие с Природой.

То же верно и в отношении вертящихся огненных колёс, раскручиваемых реактивными струями искр. Именно такой механизм раскрутки, видимо, реализуется в электроне и придаёт ему спин и магнитный момент (§ 3.19). Не зря и на Руси слово "коло", "колесо" ассоциировалось всегда с огнём, Солнцем и его круговым движением. Достаточно вспомнить огненные колёса, пускаемые на Руси с гор в день летнего солнцестояния и другие русские огневые игры, подтверждающие отмеченную ещё Н. Рёрихом связь с древнеиндийской культурой. Вращение и качение Солнца символизировала и древнеиндийская и древнерусская свастика — самый распространённый узор у наших предков. Потому упомянутая ранее игрушка, ионно-ветряная мельница-вертушка (Рис. 141.в) и свастика имеют глубокий смысл, удивительно точно отражая реальную четырёхсекторную картину силовых магнитных линий кружащегося Солнца и источаемых им потоков солнечного ионного ветра. Если по тому же механизму идёт и раскрутка электрона, это будет лучшей иллюстрацией подобия микро-, макро- и мегамира. Есть и другая похожая игрушка — четырёхсекторная пирамидальная вертушка из бумаги, уравновешенная на игле и при поднесении правой руки самопроизвольно раскручиваемая против часовой стрелки, подобно Солнцу и ионно-ветряной вертушке [94, с. 119].

Таким образом, пиротехника была прежде не просто игрой и зрелищем, развлечением, но, видимо, несла глубокий скрытый научный смысл, знания о структуре света, электричества, о строении нижних, и верхних этажей мира, и, возможно, была символическим языком общения с этими мирами. Выходит, древнеиндийская пиротехника, ракетная техника и баллистика, подобно БТР, может представлять собой верную модель и орудие для освоения микромира и космоса (§ 5.11). Свидетельство этому можно усмотреть и в том, что Демокрит создал свою атомистическую теорию, говорящую о распространении света в виде мельчайших частиц, источаемых светящимися телами, во многом под влиянием индийских магов и факиров, у которых учился [31, с. 103]. Эти глубокие познания индусов о структуре мироздания отмечены и в упомянутом выше рассказе Р. Джоунса "Уровень шума".

К играм с огнём примыкают спортивные ритуальные игрища. Олимпийские игры, зародившиеся в Древней Греции, пропитаны символикой огня. Вечный, неугасимый олимпийский огонь, вполне вероятно, символизировал основу нашего мира — неиссякаемые заряды, электроны, источающие вечный поток энергии, искр-реонов (§ 1.5). А эстафета, передача бегунами факела, искры от одного олимпийского огня к другому — это полная аналогия обменного взаимодействия зарядов, связанных посредством искр, бегунов-реонов, которыми поддерживают друг друга (Рис. 7). Особенно чётко эта модель обмена импульсами отражена в играх с мячом и воланом, перелетающим от игрока к игроку, скажем в теннисе, пинг-понге, бадминтоне, где на мысль о баллистической аналогии излучения наводит уже само название метательных снарядов: мяч (англ. "ball") и "ракетка". И в этих играх спортсмены умело используют баллистический принцип, зная, что скорость и сила удара мячика зависят как от скорости броска, так и от общего движения бросающего, добавочно придающего свою скорость мячику, равно как движение зарядов сообщает дополнительную скорость реонам. Не случайно и Р. Фейнман, позаимствовав у Ритца баллистическую обменную модель взаимодействия зарядов, приводил в качестве её иллюстрации переброску мяча меж двух игроков.

Та же обменная модель отражена и в командных играх с переброской мяча меж игроками, воротами, корзинами в волейболе, хоккее, футболе, баскетболе, известных в разных вариантах с древности, например у индейцев Майя. Отметим, что у Майя, известных своими пирамидами и глубокими научными познаниями о природе, "игра" носила важный ритуальный характер и велась жрецами (учёными), заключая в себе их образные представления о мире. Кстати, в важнейших олимпийских состязаниях, таких как метание диска, ядра или копья с разбега, отражён баллистический принцип для света, лучи которого издревле сравнивали с метательными снарядами (Зевс, или Перун, которому посвящены олимпийские игры, метал свет огненных молний, словно стрелы). Брошенное тело по баллистическому принципу наращивало скорость и дальность полёта за счёт разбега метателя, что издревле применяли в сражениях всадники-копейщики и лучники, стрелявшие с мчащихся коней и боевых колесниц, этих предков мотострелковой техники. Кстати, военные колесницы, подобно другим боевым орудиям, тоже применялись в спортивных состязаниях, на гонках колесниц, ныне переродившихся в соревнования гоночных болидов. Завершая рассказ о символике олимпийских игр, отметим, что и сама награда за победу в играх — венок, пучок, связка стеблей с узкой перетяжкой (обычные в любом гербе), или олимпийский кубок, — своей биконической формой символизировала другую важную основу мира — атом с его бипирамидальной формой (Рис. 191).

Другой древнейшей игрой, относимой к спортивным (военным) и заключающей в себе глубокий смысл, представления древних об устройстве мира, являются шахматы. В шахматах две армии, фигуры двух цветов, — движутся по клеткам шахматной доски. Это очень напоминает, как говорилось, пошаговое смещение электронов и позитронов по электрон-позитронной сетке атома при генерации спектра (§ 3.2). Шахматная доска — это электрон-позитронная сетка, электроны — фигуры чёрного цвета, позитроны — белого (Рис. 101, Рис. 105, Рис. 109). Да и сами шахматные фигуры имеют биконическую, бипирамидальную форму атома. Не меньше сходства у шашек, где все фигурки однотипные, но также делятся на чёрные, соответствующие частицам, электронам, и белые, изображающие античастицы, позитроны. Причём число чёрных и белых фигур на доске исходно одинаково, словно частиц и античастиц в атоме и вообще в мире. Наконец, подобно тому как электроны прилипают только к позитронам в сетке, а позитроны — к электронам, так же и шашки движутся всегда по клеткам исходного цвета.

Напоминает шахматная доска и квадратные электронные слои в атоме, на которых электроны и позитроны могут в зависимости от элемента образовывать различные конфигурации, аналогичные позициям в шахматах (§ 3.3), и генерировать различные спектры (§ 3.2). И словно в шахматах, где возможны разные комбинации (способы движения фигур), в атоме ключевым для генерации спектра оказывается комбинационный принцип Ритца, задающий разрешённые типы движений электронов по сетке атома. Наконец, и число клеток, узлов в крайних — 6-м и 7-м электронных слоях (ключевых для элементов последних периодов) — соответствует числу клеток шахматной доски. Это те же квадраты из 8×8=64 клеток (Рис. 105), половина которых (32 чёрных клетки напротив позитронов) отведена электронам (Рис. 109). Оттого и элементов в 6-м и 7-м периодах по 32. Потому не исключено, что и шахматы, подобие которых было ещё в Древнем Египте, несут в себе скрытый, забытый смысл и знания древних об устройстве атома (§ 5.3). О роли шахмат в адекватном понимании мира говорит уже пример известного шахматиста Э. Ласкера, научно критиковавшего теорию относительности и считавшего, что в абсолютном вакууме, в отсутствие снижающего скорость вещества (§ 1.13), можно обнаружить отличие скорости света от c=3·108 м/с, причём сколь угодно большое [58].

В древних шахматах, по-видимому, отражено также единство атомных и ядерных свойств. С одной стороны электроны и позитроны подобны шахматным фигурам двух цветов, шагающим по шахматной доске электрон-позитронной сетки (§ 3.3), но с другой, есть ещё протоны с нейтронами, сидящие в той же сетке (§ 3.6). Всего 4 типа частиц, фигур, четыре армии почти равной численности. И надо отметить, что в исконной древнеиндийской версии шахмат были фигуры как раз 4-х цветов, 4 армии, базирующиеся по углам шахматной доски, за которой играли четверо (Рис. 189). Потому и назывались шахматы "Чатуранга", — "четыре армии", символизирующие 4 силы влияний, 4 стихии. Отсюда напрашивается мысль, что в схеме древних шахмат отражены забытые представления о структуре атома, всё ещё доходящие до нас в форме популярной некогда в России игры Рич-Рач, где фишки 4-х цветов ходят вдоль крестовины, как электроны в модели Ритца (§ 3.1).

Также в чатуранге и Рич-Раче отражён случайный характер движения генерирующего спектр электрона по узлам сетки, поскольку фигуры там ходят не произвольно, а в зависимости от выброшенного числа очков на игральных костях, на этом древнем примере гадательной игры и генератора случайных чисел. Впрочем, "случайность" при этом связывалась с проявлением высшей воли, с предопределением, природным законом (§ 4.13). Напомним, что интенсивность данной спектральной линии элемента задаётся именно вероятностью пребывания электрона в данном узле, определяемой стабильностью его положения (§ 3.4). Такой вероятностный закон движения частиц и фигур в чатуранге [18], в зависимости от выпавшего числа очков, хоть и не сохранился в современных шахматах, зато остался в других играх с фишками, скажем в Трик-Траке (нардах) или в том же Рич-Раче. Пара игральных костей в чатуранге случайно задаёт два целых числа, определяющих ход фигуры, так же как комбинация двух целых чисел задаёт в атоме положение электрона и генерируемую им частоту по комбинационному принципу Ритца, предсказывающему спектр водорода (§ 3.1).

Эта взаимосвязь шахмат, чатуранги с другими играми и предсказаниями, с моделью микро- и мегамира, и особенно с магнитной моделью атома, следует из работ Дж. Нидэма, который ещё в 1962 г. писал о глубокой связи магнита и шахмат. Одна из глав его книги так и называлась: "Магнит, предсказание и шахматы" (см. Линдер И. Шахматы на Руси. М.: Наука, 1975, с. 23). Тезис Нидема о родстве шахмат с магнитом, компасом, балансом мировых позитивных и негативных сил, вполне согласуется с магнитной моделью атома Ритца, где так же сбалансировано число позитронов и электронов, и где магнетизм с закономерной случайностью играют ключевую роль. Эта связь магнитов и чатуранги ныне вновь проявилась, хотя бы в виде карманных шахмат с магнитными фигурками.

О связи чатуранги, шахмат и шашек с миром баталий и атомов говорит и некогда популярная у нас игра "Чапаев", в которой моделируются уже не только исходные позиции электронов и позитронов в ядре, но и их соударения с вылетом из атомов (§ 4.6), а также соударения самих атомов. Не случайно по примеру этой игры ударами шашек на шахматной доске, так же как соударением бильярдных шаров, иллюстрируют столкновения атомов и элементарных частиц в учебниках физики. Бильярд и будто бы несерьёзная игра в "Чапаева" имеют в действительности глубокие корни и смысл, происходя от древнеиндийской игры под названием "карром", подобно шахматам имевшей квадратное поле и четыре лузы по углам, вместо шести луз в бильярде.

Возможно, эти родственные игры (карром, "Чапаев" и бильярд) не просто иллюстрируют столкновения частиц и обменную модель их взаимодействия, но отражают реальные представления древних об атомах, электронах и их строении. Не случайно фишки, шашки и шары в этих играх исходно выстраиваются в кристаллически правильном, пирамидальном порядке. А будучи посланы битой или кием, они моделируют процесс испускания электронами реонов, перенос ими импульса с конечной скоростью и поглощение другим электроном или позитроном, когда этот переносчик импульса ударяет в другой шар, шашку, или "поглощается" лузой. О связи этих игр с чатурангой говорит и применение в них костей, но уже не игральных кубических, а круглых, тоже бросаемых или толкаемых в качестве биты и вносящих элемент случайности в игру. Элементы бросания костей, модели обменного взаимодействия и кристаллического, пирамидального строения ударяемых частиц прослеживаются и в древнерусских играх в бабки и лапту, ныне сохранившихся в виде игры в кегли и городки (а на западе — в бейсбол). Возможно, причина популярности всех этих игр, даже среди взрослых, скрыта именно в том, что они несут заложенные в них знания древних об устройстве мироздания, атомов, о законах и механизмах природы. Люди интуитивно чувствуют этот глубокий смысл и потому с огромным азартом, интересом и удовольствием играют в эти, на первый взгляд, немудрёные аналоги древнеиндийских каррома и чатуранги.

Наличие четырёх основных первоэлементов, четырёх разноцветных армий чатуранги отражено и в современных игральных и гадальных картах, тоже имеющих древнейшее происхождение и ровно 4 масти, каждая из 14-ти карт. В картах и пасьянсах, раскладываемых правильными рядами-таблицами, в согласии с жёсткими правилами, опять же отражён гадательный, случайный характер движений электрона по атомной сетке, подчинённый однако определённым законам. Поэтому не удивительно, что именно Менделеев, как любитель пасьянсов, учащих систематизации, стал открывателем одноимённого закона, напрямую связанного со строением атома. Да и в древности азартные и гадательные игры, в отличие от их современных аналогов (рулетки, карт, ошибочно служащих целям обмана и обогащения), помогали человеку познавать устройство и закономерности мироздания. Не потому ли пара кубиков игральных костей так напоминает кубические атомы Льюиса-Ленгмюра с электронами-точками на гранях [139]? А в домино эти точки на костяшках, срисованные с граней пары игральных костей в разных комбинациях и изображающие электроны атомных уровней, отражён и характер соединения атомов в молекулы, кристаллы и протяжённые цепи по принципу подобия форм, соответствия числа точек-электронов в соседних костяшках-атомах (§ 4.14).

Ещё одна древняя азартная игра, Лото, тоже тесно связана со строением атома и заселением его этажей электронами по законам случая и порядка. Подписанные числами клетки на особых картах Лото занимают фишками, пока одна из карточек не заполнится, подобно заполнению электронами ячеек на уровнях атомов. Причём фишки могут образовывать на картах только строго определённые конфигурации, заданные расположением чисел при совпадении их с вынутыми вслепую номерами бочонков. Это соответствует различным размещениям электронов на уровне атома, дающим в зависимости от конфигурации различные спектральные линии, особенно в многоэлектронных атомах, где действуют строгие правила отбора возможных комбинаций (§ 3.4). Много общего у размещения частиц в атоме и Лото с игрой в пятнашки и магическими квадратами, тоже заполненными числами по определённым законам. Не случайно и особо устойчивые конфигурации протонов и нейтронов в атоме называют "магическими" (§ 3.6), что так же как в магических и полумагических квадратах связано с определённой симметрией, гармонией заполнения квадратов.

Рис. 189. а) чатуранга; б) шахматная фигура; в) бипирамида; г) матрёшка; д) восьмёрка; е) p-орбиталь атома.


Другой пример подобия игр и строения атома даёт русская матрёшка — семь фигур-оболочек, вложенных одна в другую. Чем не модель атома, отражающая наличие у него семи электронных слоёв-оболочек, окружающих ядро с двух сторон (двух частей бипирамидального атома) и отвечающих за 7 периодов таблицы Менделеева? И чем не модель макрокосма, соотносящаяся с древнеиндийской схемой мира: центра мира в кольцах семи гор и морей (эта же схема строения мира представлена и в зачинах русских сказок: "За семью горами, за семью морями…")? К тому же матрёшки выполняют в форме восьмёрки, близкой к биконусу и бипирамидальному атому. Даже в квантовой физике эта восьмёрка-гантель возникла в виде p-орбитали атома [46]. Часто рисуемые на матрёшках загадочные идентичные спирали, упорядоченно размещённые на оболочках, могут изображать электроны, с их периодичным размещением на уровнях атома и вращением, порождающим магнитное (вихревое) поле, которое исходит от каждого электрона в виде потока реонов (точек, на которые разбиваются спирали). Также матрёшка отражает осевую структуру атома, допускающую вращение внешних электронов в магнитном поле атома по круговым орбитам (аналогично вращению половинок матрёшек вокруг оси в плоскости их разъёма). А ведь матрёшка — это очень древний элемент русской культуры, который нынешняя наука зачем-то пытается произвести от японских болванчиков.

Ещё одна аналогия — это древнекитайская игра, называемая теперь "Пифагор", возникшая более 4000 лет назад. В ней из треугольных кусочков складывают разные фигуры-предметы. Причём число кусочков в головоломке равно семи — по числу электронных уровней. Чем не древняя модель, отображающая построение тел из атомов, а атомов из плоских треугольных слоёв? Ведь именно из плоских треугольников, образованных электронами и позитронами, складываются бипирамидки атомов и молекул с их треугольными гранями (Рис. 107). Также вспоминается модель атомов Платона (§ 5.3), который считал их пирамидками, сложенными из однотипных треугольников, и выше всего чтил геометрию [144]. Не зря и в Китае головоломка служила не просто игрушкой, а обучала детей геометрии, ключевой для понимания структуры мира [94].

Пирамиды почитались всюду и имели сакральный смысл ещё и потому, что издавна ассоциировались, хотя бы тем же Платоном, с огнём, — отсюда слова пиротехника, пир, пирог. С одной стороны это подчёркивает связь БТР и баллистической модели электрона с древнеиндийскими огнепоклонниками, а с другой говорит о том, что древние, представляя атом в форме пирамиды, возможно, знали о заключённой в нём взрывной атомной энергии. Вообще, пирамида — это символ иерархии — многоуровневого устройства мира. Даже детская пирамидка — 7 разноцветных колец, поэтажно насаживаемых на ось, — является, по сути, такой же моделью мира, 7-уровнего атома. Поэтому игры, в которые играют дети, — куда глубже, чем принято считать: это тоже модели мира. Все перечисленные игры — "Пифагор", шахматы, чатуранга, Рич-Рач, карты, пирамидка, матрёшка — носили прежде сакральный смысл, в них "играли" в храмах (исполнявших роли наших "храмов науки" — библиотек, институтов и лабораторий), следуя строгому ритуалу, жрецы, исконно выполнявшие по совместительству функции учёных, хранителей знаний. Игры всегда помогали людям глубоко вникнуть в суть мироздания, как показано в фильме "Игры богов". Не случайно один из авторов этого фильма, Валерий Никитич Дёмин, одним из первых поддержал и начал развивать баллистическую теорию в нашей стране (см. его книгу "Тайны Вселенной" и [44], написанную вместе с проф. В.П. Селезнёвым).

Другим игровым примером бипирамидальной, биконической модели атома и крутящегося электрона оказывается обычная юла, волчок — конус или биконус, вертящийся на тонкой ножке. Эта игрушка, известная с глубокой древности, тоже имеет сакральный смысл. Ещё тысячелетия назад игроки Древней Греции и Древней Руси запускали волчок-кубарь в форме катушки-биконуса, который кнутом раскручивали и гоняли по плоской поверхности, порой сталкивая несколько кубарей. Так возникло выражение "катиться кубарем" и название "игрального кубика", тоже случайно снующего по поверхности и изображающего атом. Прыгающие, беспорядочно мечущиеся волчки-кубари — это красивая модель хаотично движущихся, сталкивающихся атомов, обладающих той же формой и тоже периодично подстёгиваемых энергией налетающих электронов, спирально наматывающих витки орбит на атомы. То, что нашим предкам волчок-кубарь служил моделью атома и крутящегося электрона, подтверждает и другое название кубаря — "точка" (атомы и электроны, как наименьшие частицы вещества, часто называли "точками", § 1.4). Не случайно и атомист Ломоносов, глубоко разбиравшийся в древнерусской культуре и в строении атомов, сравнивал микрочастицы с волчками (§ 4.1, § 4.15). Близка к бипирамидальной модели атома и другая разновидность волчка — диаболо (йо-йо) — два конуса, соединённые вершинами в форме катушки, песочных часов, и раскручиваемые на весу ниткой, охватывающей эту катушку [148]. Очень возможно, что в этих нехитрых, но зрелищных игрушках (ионно-ветряных вертушках, юлах, волчках, кубарях, йо-йо), отражена и структура Громового храма, тоже имеющего, как увидим, прямое отношение к форме и строению атома (§ 5.3).

Наконец, в таких играх как домино, кубики, паззлы, детский конструктор, по сути, отражены принципы связи атомов и построения материи из периодично расположенных частиц, соединённых плоскими гранями или стык в стык. Та же модель построения по принципу геометрического соответствия, взаимного дополнения форм деталей, их выпуклостей и впадин, отражена и в популярной компьютерной игре "Тетрис", а также в некоторых других логических компьютерных играх, из числа развивающих пространственное воображение и навыки конструктора.

В свете сказанного становится понятно, насколько важен подбор подходящих игрушек для малолетнего ребёнка, у которого ещё только закладывается разум и картина мироздания, — для адекватного воспитания его интеллекта и представлений о мире. От того, какую предысторию развития и обучения имел в детстве человек и насколько хорошо помнит уроки юности, напрямую зависит насколько успешен он будет в зрелости, в будущем. Воспоминания детства — самые яркие. Они сопровождают и учат человека всю жизнь. Вот почему игрушки и игры должны быть не просто забавой, но нужны, чтобы ещё воспитывать, развивать физически, духовно и умственно. Это — так называемые развивающие игры. И лучшие кандидаты на их роль — это те, в которые играли ещё наши предки. Не зря одни и те же игрушки порой передаются из поколения в поколение. Такие игры сохраняют традицию и несут древнее знание, до поры до времени не осознаваемое. От того, насколько хорошо мы помним прошлое, уроки истории науки и человечества, — напрямую зависит наше будущее, как мудро заметил Платон. И, действительно, именно знания древних, донесённые до нас, правильно понятые и обогащённые новым знанием, позволят сделать прорыв в будущее, создать совершенно фантастическую технику будущего и восстановить гармонию мира.


Содержание:
 0  Баллистическая теория Ритца и картина мироздания : Сергей Семиков  1  ОТ АВТОРА : Сергей Семиков
 7  § 1.4 Природа электрического отталкивания и закон Кулона : Сергей Семиков  14  § 1.11 Электромагнитные волны : Сергей Семиков
 21  § 1.18 Изменение хода времени в поле тяготения : Сергей Семиков  28  § 1.3 Электродинамика Ритца : Сергей Семиков
 35  § 1.10 Эффект Ритца : Сергей Семиков  42  § 1.17 Природа массы и гравитации : Сергей Семиков
 49  § 2.2 Искривление лучей света возле Солнца и А. Эддингтон : Сергей Семиков  56  § 2.9 Проверка баллистического принципа в космосе : Сергей Семиков
 63  § 2.16 Вращающиеся звёзды и космические дуги : Сергей Семиков  70  § 2.1 Радиолокационные измерения в космосе : Сергей Семиков
 77  § 2.8 Космическая дисперсия : Сергей Семиков  84  § 2.15 Сверхсветовые скорости выбросов : Сергей Семиков
 91  Часть 3 МИКРОМИР ПО РИТЦУ : Сергей Семиков  98  § 3.7 Ядерные спектры и эффект Мёссбауэра : Сергей Семиков
 105  § 3.14 Гипотеза индуцированных распадов ядер и частиц : Сергей Семиков  112  § 3.21 Эфир и реоны : Сергей Семиков
 119  § 3.6 Строение ядер : Сергей Семиков  126  § 3.13 Ядерные реакции и дефект массы : Сергей Семиков
 133  § 3.20 Реоны, ареоны и плюс — минус масса : Сергей Семиков  140  § 4.5 Нелинейный фотоэффект : Сергей Семиков
 147  § 4.12 Работа выхода и туннельный эффект : Сергей Семиков  154  § 4.19 Магнетизм и ферромагнетизм : Сергей Семиков
 161  § 4.4 Селективный фотоэффект : Сергей Семиков  168  § 4.11 Волновые свойства частиц : Сергей Семиков
 175  § 4.18 Фазовые переходы 1-го и 2-го рода : Сергей Семиков  182  § 5.3 БТР в древних культах и скрытое знание : Сергей Семиков
 189  § 5.10 Космолучевая сверхсветовая связь : Сергей Семиков  196  § 5.17 Гармония природы, науки и человека : Сергей Семиков
 202  § 5.1 Фантазия и реальность : Сергей Семиков  203  вы читаете: § 5.2 БТР в древних играх : Сергей Семиков
 204  § 5.3 БТР в древних культах и скрытое знание : Сергей Семиков  210  § 5.9 Создание новых веществ, элементов, частиц : Сергей Семиков
 217  § 5.16 Ассоциативный метод, единство и взаимосвязь явлений : Сергей Семиков  224  Таблица опытов по проверке БТР, СТО и ОТО : Сергей Семиков
 231  Именной указатель[1] : Сергей Семиков  232  Предметный указатель : Сергей Семиков
 233  Использовалась литература : Баллистическая теория Ритца и картина мироздания    



 




sitemap